Controlling VUV photon fluxes in pulsed inductively coupled Ar/Cl2 plasmas and potential applications in plasma etching

نویسنده

  • Kushner
چکیده

UV/VUV photon fluxes in plasma materials processing have a variety of effects ranging from producing damage to stimulating synergistic reactions. Although in plasma etching processes, the rate and quality of the feature are typically controlled by the characteristics of the ion flux, to truly optimize these ion and photon driven processes, it is desirable to control the relative fluxes of ions and photons to the wafer. In prior works, it was determined that the ratio of VUV photon to ion fluxes to the substrate in low pressure inductively coupled plasmas (ICPs) sustained in rare gases can be controlled by combinations of pressure and pulse power, while the spectrum of these VUV photons can be tuned by adding additional rare gases to the plasma. In this work, VUV photon and ion fluxes are computationally investigated for Ar/Cl2 ICPs as used in etching of silicon. We found that while the overall ratio of VUV photon flux to ion flux are controlled by pressure and pulse power, by varying the fraction of Cl2 in the mixture, both the ratio of VUV to ion fluxes and the spectrum of VUV photons can be tuned. It was also found that the intensity of VUV emission from Cl(3p44s) can be independently tuned by controlling wall surface conditions. With this ability to control ratios of ion to photon fluxes, photon stimulated processes, as observed in halogen etching of Si, can be tuned to optimize the shape of the etched features.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Controlling VUV photon fluxes in low-pressure inductively coupled plasmas

Low-pressure (a few to hundreds of millitorrs) inductively coupled plasmas (ICPs), as typically used in microelectronics fabrication, often produce vacuum-ultraviolet (VUV) photon fluxes onto surfaces comparable to or exceeding the magnitude of ion fluxes. These VUV photon fluxes are desirable in applications such as sterilization of medical equipment but are unwanted in many materials fabricat...

متن کامل

Electronbeam controlled radio frequency discharges for plasma processing

Related Articles Atomic-scale silicon etching control using pulsed Cl2 plasma J. Vac. Sci. Technol. B 31, 011201 (2013) Low-pressure inductively coupled plasma etching of benzocyclobutene with SF6/O2 plasma chemistry J. Vac. Sci. Technol. B 30, 06FF06 (2012) Reaction mechanisms of oxygen plasma interaction with organosilicate low-k materials containing organic crosslinking groups J. Vac. Sci. T...

متن کامل

Photo-assisted etching of silicon in chlorine- and bromine-containing plasmas

Cl2, Br2, HBr, Br2/Cl2, and HBr/Cl2 feed gases diluted in Ar (50%–50% by volume) were used to study etching of p-type Si(100) in a rf inductively coupled, Faraday-shielded plasma, with a focus on the photo-assisted etching component. Etching rates were measured as a function of ion energy. Etching at ion energies below the threshold for ion-assisted etching was observed in all cases, with Br2/A...

متن کامل

A three-dimensional model for inductively coupled plasma etching reactors: Azimuthal symmetry, coil properties, and comparison to experiments

Inductively coupled plasma ~ICP! etching reactors are rapidly becoming the tool of choice for low gas pressure, high plasma density etching of semiconductor materials. Due to their symmetry of excitation, these devices tend to have quite uniform etch rates across the wafer. However, side to side and azimuthal variations in these rates have been observed, and have been attributed to various asym...

متن کامل

Electron energy distributions and electron impact source functions in Ar/N2 inductively coupled plasmas using pulsed power

In plasma materials processing, such as plasma etching, control of the time-averaged electron energy distributions (EEDs) in the plasma allows for control of the time-averaged electron impact source functions of reactive species in the plasma and their fluxes to surfaces. One potential method for refining the control of EEDs is through the use of pulsed power. Inductively coupled plasmas (ICPs)...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017